Unit-5 programs
Program-1:
Aim: Python program to check
whether a JSON string contains complex object or not.
Program:
import json
def
has_complex_object(json_str):
try:
data=json.loads(json_str)
for value in data.values():
if isinstance(value,(list,dict)):
return True
return False
except json.JSONDecodeError:
return False
json_str1='{"name":"ravi","age":30,"city":"vijayawada"}'
json_str2='{"name":"kumar","age":25,"contact":{"email":"ravi@gmail.com","phone":"8273672682"}}'
print(has_complex_object(json_str1))
print(has_complex_object(json_str2))
program-2:
Aim: Python program to demonstrate
Numpy arrays creation using array() function.
Program:
import numpy
as np
def create_numpy_array():
arr=np.array([1,2,3,4,5])
return arr
arr=create_numpy_array()
print("Numpy
Array:",arr)
Program-3:
Aim: Python program to demonstrate
use of ndim, shape, size, dtype in Numpy array.
Program:
import numpy
as np
def
numpy_array_properties():
arr=np.array([[1,2,3],[4,5,6]])
print("Array:")
print(arr)
print("Number of
dimensions:",arr.ndim)
print("Shape(rows,columns):",arr.shape)
print("Size(total number of
elements)",arr.size)
print("Data type of
elements:",arr.dtype)
numpy_array_properties()
Program-4:
Aim: Python program to demonstrate
basic slicing, integer and Boolean indexing.
Program:
import numpy
as np
def
numpy_array_operations():
arr=np.array([1,2,3,4,5])
print("Slicing examples:")
print(arr[1:4])
print(arr[:3])
print(arr[2:])
print("\n Integer indexing:")
print(arr[[0,2,4]])
print("\nBoolean indexing:")
print(arr[arr>2])
numpy_array_operations()
Program-5:
Aim: Python program to find min,
max, sum, cumulative sum of array using Numpy.
Program:
import
numpy as np
def
numpy_array_stats():
arr=np.array([1,2,3,4,5])
print("Array:",arr)
print("Minimum
value:",np.min(arr))
print("Maximum value:",np.max(arr))
print("Sum of array
elements:",np.sum(arr))
print("Cumulative sum of array
elements:",np.cumsum(arr))
numpy_array_stats()
Program-6:
Aim: Create a dictionary, convert
it to a pandas DataFrame, and explore
data.
Program:
import pandas
as pd
def
create_dataframe_from_dict():
data = {
'Name': ['rahul', 'ravi', 'vamsi',
'sai', 'venu'],
'Age': [21, 22, 23, 24, 25],
'City': ['vijayawada', 'kondapalli',
'Mylavaram', 'IBM', 'Konduru'],
'Salary': [800000, 700000, 800000,
400000, 800000] # Corrected length
}
df = pd.DataFrame(data)
return df
df =
create_dataframe_from_dict()
print("Head
of DataFrame:")
print(df.head())
print("\nData
selection operations:")
print("Selecting
column 'Name':")
print(df['Name'])
print("\nFiltering
based on age > 22:")
print(df[df['Age']
> 22])
Comments
Post a Comment